\(\int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^m}{c-c \sin (e+f x)} \, dx\) [70]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 34, antiderivative size = 77 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^m}{c-c \sin (e+f x)} \, dx=-\frac {2^{\frac {3}{2}+m} \cos (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-\frac {1}{2}-m,\frac {3}{2},\frac {1}{2} (1-\sin (e+f x))\right ) (1+\sin (e+f x))^{-\frac {1}{2}-m} (a+a \sin (e+f x))^m}{c f} \]

[Out]

-2^(3/2+m)*cos(f*x+e)*hypergeom([1/2, -1/2-m],[3/2],1/2-1/2*sin(f*x+e))*(1+sin(f*x+e))^(-1/2-m)*(a+a*sin(f*x+e
))^m/c/f

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {2919, 2731, 2730} \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^m}{c-c \sin (e+f x)} \, dx=-\frac {2^{m+\frac {3}{2}} \cos (e+f x) (\sin (e+f x)+1)^{-m-\frac {1}{2}} (a \sin (e+f x)+a)^m \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-m-\frac {1}{2},\frac {3}{2},\frac {1}{2} (1-\sin (e+f x))\right )}{c f} \]

[In]

Int[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^m)/(c - c*Sin[e + f*x]),x]

[Out]

-((2^(3/2 + m)*Cos[e + f*x]*Hypergeometric2F1[1/2, -1/2 - m, 3/2, (1 - Sin[e + f*x])/2]*(1 + Sin[e + f*x])^(-1
/2 - m)*(a + a*Sin[e + f*x])^m)/(c*f))

Rule 2730

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2^(n + 1/2))*a^(n - 1/2)*b*(Cos[c + d*x]/
(d*Sqrt[a + b*Sin[c + d*x]]))*Hypergeometric2F1[1/2, 1/2 - n, 3/2, (1/2)*(1 - b*(Sin[c + d*x]/a))], x] /; Free
Q[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] && GtQ[a, 0]

Rule 2731

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[a^IntPart[n]*((a + b*Sin[c + d*x])^FracPart
[n]/(1 + (b/a)*Sin[c + d*x])^FracPart[n]), Int[(1 + (b/a)*Sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, n}, x]
 && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] &&  !GtQ[a, 0]

Rule 2919

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*(c^m/g^(2*m)), Int[(g*Cos[e + f*x])^(2*m + p)*(c + d*Sin[e + f*x])
^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && Integer
Q[m] &&  !(IntegerQ[n] && LtQ[n^2, m^2])

Rubi steps \begin{align*} \text {integral}& = \frac {\int (a+a \sin (e+f x))^{1+m} \, dx}{a c} \\ & = \frac {\left ((1+\sin (e+f x))^{-m} (a+a \sin (e+f x))^m\right ) \int (1+\sin (e+f x))^{1+m} \, dx}{c} \\ & = -\frac {2^{\frac {3}{2}+m} \cos (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-\frac {1}{2}-m,\frac {3}{2},\frac {1}{2} (1-\sin (e+f x))\right ) (1+\sin (e+f x))^{-\frac {1}{2}-m} (a+a \sin (e+f x))^m}{c f} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 5 in optimal.

Time = 2.17 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.97 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^m}{c-c \sin (e+f x)} \, dx=\frac {2^{1+m} B_{\frac {1}{2} (1+\sin (e+f x))}\left (\frac {3}{2}+m,\frac {1}{2}\right ) \sqrt {\cos ^2(e+f x)} \sec (e+f x) (1+\sin (e+f x))^{-m} (a (1+\sin (e+f x)))^m}{c f} \]

[In]

Integrate[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^m)/(c - c*Sin[e + f*x]),x]

[Out]

(2^(1 + m)*Beta[(1 + Sin[e + f*x])/2, 3/2 + m, 1/2]*Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*(a*(1 + Sin[e + f*x]))^m
)/(c*f*(1 + Sin[e + f*x])^m)

Maple [F]

\[\int \frac {\left (\cos ^{2}\left (f x +e \right )\right ) \left (a +a \sin \left (f x +e \right )\right )^{m}}{c -c \sin \left (f x +e \right )}d x\]

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e)),x)

[Out]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e)),x)

Fricas [F]

\[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^m}{c-c \sin (e+f x)} \, dx=\int { -\frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{m} \cos \left (f x + e\right )^{2}}{c \sin \left (f x + e\right ) - c} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e)),x, algorithm="fricas")

[Out]

integral(-(a*sin(f*x + e) + a)^m*cos(f*x + e)^2/(c*sin(f*x + e) - c), x)

Sympy [F]

\[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^m}{c-c \sin (e+f x)} \, dx=- \frac {\int \frac {\left (a \sin {\left (e + f x \right )} + a\right )^{m} \cos ^{2}{\left (e + f x \right )}}{\sin {\left (e + f x \right )} - 1}\, dx}{c} \]

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**m/(c-c*sin(f*x+e)),x)

[Out]

-Integral((a*sin(e + f*x) + a)**m*cos(e + f*x)**2/(sin(e + f*x) - 1), x)/c

Maxima [F]

\[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^m}{c-c \sin (e+f x)} \, dx=\int { -\frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{m} \cos \left (f x + e\right )^{2}}{c \sin \left (f x + e\right ) - c} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e)),x, algorithm="maxima")

[Out]

-integrate((a*sin(f*x + e) + a)^m*cos(f*x + e)^2/(c*sin(f*x + e) - c), x)

Giac [F]

\[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^m}{c-c \sin (e+f x)} \, dx=\int { -\frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{m} \cos \left (f x + e\right )^{2}}{c \sin \left (f x + e\right ) - c} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate(-(a*sin(f*x + e) + a)^m*cos(f*x + e)^2/(c*sin(f*x + e) - c), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^m}{c-c \sin (e+f x)} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^m}{c-c\,\sin \left (e+f\,x\right )} \,d x \]

[In]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^m)/(c - c*sin(e + f*x)),x)

[Out]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^m)/(c - c*sin(e + f*x)), x)